das mit Google höre ich gerne -- da gab es nämlich bis vor kurzem technische Probleme.
Auf einen Datensatz in einem Nicht-Standard Paket in dem keine Variable X2 oder X3 heißt, hätte man jetzt auch nicht kommen müssen. Wer sich das Paket nicht gleich installieren möchte, findet die Daten auch hier:
Code: Alles auswählen
marketing = structure(
list(
youtube = c(
276.12,
53.4,
20.64,
181.8,
216.96,
10.44,
69,
144.24,
10.32,
239.76,
79.32,
257.64,
28.56,
117,
244.92,
234.48,
81.36,
337.68,
83.04,
176.76,
262.08,
284.88,
15.84,
273.96,
74.76,
315.48,
171.48,
288.12,
298.56,
84.72,
351.48,
135.48,
116.64,
318.72,
114.84,
348.84,
320.28,
89.64,
51.72,
273.6,
243,
212.4,
352.32,
248.28,
30.12,
210.12,
107.64,
287.88,
272.64,
80.28,
239.76,
120.48,
259.68,
219.12,
315.24,
238.68,
8.76,
163.44,
252.96,
252.84,
64.2,
313.56,
287.16,
123.24,
157.32,
82.8,
37.8,
167.16,
284.88,
260.16,
238.92,
131.76,
32.16,
155.28,
256.08,
20.28,
33,
144.6,
6.48,
139.2,
91.68,
287.76,
90.36,
82.08,
256.2,
231.84,
91.56,
132.84,
105.96,
131.76,
161.16,
34.32,
261.24,
301.08,
128.88,
195.96,
237.12,
221.88,
347.64,
162.24,
266.88,
355.68,
336.24,
225.48,
285.84,
165.48,
30,
108.48,
15.72,
306.48,
270.96,
290.04,
210.84,
251.52,
93.84,
90.12,
167.04,
91.68,
150.84,
23.28,
169.56,
22.56,
268.8,
147.72,
275.4,
104.64,
9.36,
96.24,
264.36,
71.52,
0.84,
318.24,
10.08,
263.76,
44.28,
57.96,
30.72,
328.44,
51.6,
221.88,
88.08,
232.44,
264.6,
125.52,
115.44,
168.36,
288.12,
291.84,
45.6,
53.64,
336.84,
145.2,
237.12,
205.56,
225.36,
4.92,
112.68,
179.76,
14.04,
158.04,
207,
102.84,
226.08,
196.2,
140.64,
281.4,
21.48,
248.16,
258.48,
341.16,
60,
197.4,
23.52,
202.08,
266.88,
332.28,
298.08,
204.24,
332.04,
198.72,
187.92,
262.2,
67.44,
345.12,
304.56,
246,
167.4,
229.32,
343.2,
22.44,
47.4,
90.6,
20.64,
200.16,
179.64,
45.84,
113.04,
212.4,
340.32,
278.52
),
facebook = c(
45.36,
47.16,
55.08,
49.56,
12.96,
58.68,
39.36,
23.52,
2.52,
3.12,
6.96,
28.8,
42.12,
9.12,
39.48,
57.24,
43.92,
47.52,
24.6,
28.68,
33.24,
6.12,
19.08,
20.28,
15.12,
4.2,
35.16,
20.04,
32.52,
19.2,
33.96,
20.88,
1.8,
24,
1.68,
4.92,
52.56,
59.28,
32.04,
45.24,
26.76,
40.08,
33.24,
10.08,
30.84,
27,
11.88,
49.8,
18.96,
14.04,
3.72,
11.52,
50.04,
55.44,
34.56,
59.28,
33.72,
23.04,
59.52,
35.4,
2.4,
51.24,
18.6,
35.52,
51.36,
11.16,
29.52,
17.4,
33,
52.68,
36.72,
17.16,
39.6,
6.84,
29.52,
52.44,
1.92,
34.2,
35.88,
9.24,
32.04,
4.92,
24.36,
53.4,
51.6,
22.08,
33,
48.72,
30.6,
57.36,
5.88,
1.8,
40.2,
43.8,
16.8,
37.92,
4.2,
25.2,
50.76,
50.04,
5.16,
43.56,
12.12,
20.64,
41.16,
55.68,
13.2,
0.36,
0.48,
32.28,
9.84,
45.6,
18.48,
24.72,
56.16,
42,
17.16,
0.96,
44.28,
19.2,
32.16,
26.04,
2.88,
41.52,
38.76,
14.16,
46.68,
0,
58.8,
14.4,
47.52,
3.48,
32.64,
40.2,
46.32,
56.4,
46.8,
34.68,
31.08,
52.68,
20.4,
42.48,
39.84,
6.84,
17.76,
2.28,
8.76,
58.8,
48.36,
30.96,
16.68,
10.08,
27.96,
47.64,
25.32,
13.92,
52.2,
1.56,
44.28,
22.08,
21.72,
42.96,
21.72,
44.16,
17.64,
4.08,
45.12,
6.24,
28.32,
12.72,
13.92,
25.08,
24.12,
8.52,
4.08,
58.68,
36.24,
9.36,
2.76,
12,
3.12,
6.48,
6.84,
51.6,
25.56,
54.12,
2.52,
34.44,
16.68,
14.52,
49.32,
12.96,
4.92,
50.4,
42.72,
4.44,
5.88,
11.16,
50.4,
10.32
),
newspaper = c(
83.04,
54.12,
83.16,
70.2,
70.08,
90,
28.2,
13.92,
1.2,
25.44,
29.04,
4.8,
79.08,
8.64,
55.2,
63.48,
136.8,
66.96,
21.96,
22.92,
64.08,
28.2,
59.52,
31.44,
21.96,
23.4,
15.12,
27.48,
27.48,
48.96,
51.84,
46.32,
36,
0.36,
8.88,
10.2,
6,
54.84,
42.12,
38.4,
37.92,
46.44,
2.16,
31.68,
51.96,
37.8,
42.84,
22.2,
59.88,
44.16,
41.52,
4.32,
47.52,
70.44,
19.08,
72,
49.68,
19.92,
45.24,
11.16,
25.68,
65.64,
32.76,
10.08,
34.68,
1.08,
2.64,
12.24,
13.2,
32.64,
46.44,
38.04,
23.16,
37.56,
15.72,
107.28,
24.84,
17.04,
11.28,
27.72,
26.76,
44.28,
39,
42.72,
40.56,
78.84,
19.2,
75.84,
88.08,
61.68,
11.16,
39.6,
70.8,
86.76,
13.08,
63.48,
7.08,
26.4,
61.44,
55.08,
59.76,
121.08,
25.68,
21.48,
6.36,
70.8,
35.64,
27.84,
30.72,
6.6,
67.8,
27.84,
2.88,
12.84,
41.4,
63.24,
30.72,
17.76,
95.04,
26.76,
55.44,
60.48,
18.72,
14.88,
89.04,
31.08,
60.72,
11.04,
3.84,
51.72,
10.44,
51.6,
2.52,
54.12,
78.72,
10.2,
11.16,
71.64,
24.6,
2.04,
15.48,
90.72,
45.48,
41.28,
46.68,
10.8,
10.44,
53.16,
14.28,
24.72,
44.4,
58.44,
17.04,
45.24,
11.4,
6.84,
60.6,
29.16,
54.24,
41.52,
36.84,
59.16,
30.72,
8.88,
6.48,
101.76,
25.92,
23.28,
69.12,
7.68,
22.08,
56.88,
20.4,
15.36,
15.72,
50.16,
24.36,
42.24,
28.44,
21.12,
9.96,
32.88,
35.64,
86.16,
36,
23.52,
31.92,
21.84,
4.44,
28.08,
6.96,
7.2,
37.92,
4.32,
7.2,
16.56,
9.72,
7.68,
79.44,
10.44
),
sales = c(
26.52,
12.48,
11.16,
22.2,
15.48,
8.64,
14.16,
15.84,
5.76,
12.72,
10.32,
20.88,
11.04,
11.64,
22.8,
26.88,
15,
29.28,
13.56,
17.52,
21.6,
15,
6.72,
18.6,
11.64,
14.4,
18,
19.08,
22.68,
12.6,
25.68,
14.28,
11.52,
20.88,
11.4,
15.36,
30.48,
17.64,
12.12,
25.8,
19.92,
20.52,
24.84,
15.48,
10.2,
17.88,
12.72,
27.84,
17.76,
11.64,
13.68,
12.84,
27.12,
25.44,
24.24,
28.44,
6.6,
15.84,
28.56,
22.08,
9.72,
29.04,
18.84,
16.8,
21.6,
11.16,
11.4,
16.08,
22.68,
26.76,
21.96,
14.88,
10.56,
13.2,
20.4,
10.44,
8.28,
17.04,
6.36,
13.2,
14.16,
14.76,
13.56,
16.32,
26.04,
18.24,
14.4,
19.2,
15.48,
20.04,
13.44,
8.76,
23.28,
26.64,
13.8,
20.28,
14.04,
18.6,
30.48,
20.64,
14.04,
28.56,
17.76,
17.64,
24.84,
23.04,
8.64,
10.44,
6.36,
23.76,
16.08,
26.16,
16.92,
19.08,
17.52,
15.12,
14.64,
11.28,
19.08,
7.92,
18.6,
8.4,
13.92,
18.24,
23.64,
12.72,
7.92,
10.56,
29.64,
11.64,
1.92,
15.24,
6.84,
23.52,
12.96,
13.92,
11.4,
24.96,
11.52,
24.84,
13.08,
23.04,
24.12,
12.48,
13.68,
12.36,
15.84,
30.48,
13.08,
12.12,
19.32,
13.92,
19.92,
22.8,
18.72,
3.84,
18.36,
12.12,
8.76,
15.48,
17.28,
15.96,
17.88,
21.6,
14.28,
14.28,
9.6,
14.64,
20.52,
18,
10.08,
17.4,
9.12,
14.04,
13.8,
32.4,
24.24,
14.04,
14.16,
15.12,
12.6,
14.64,
10.44,
31.44,
21.12,
27.12,
12.36,
20.76,
19.08,
8.04,
12.96,
11.88,
7.08,
23.52,
20.76,
9.12,
11.64,
15.36,
30.6,
16.08
)
),
row.names = c(NA,-200L),
class = "data.frame"
)
Ich nehme dann mal an, dass sales die abhängige Variable sein soll. Die von Dir aufgeschriebene Regressionsgleichung entsteht dann so:
Für die angestrebte Vorhersage kannst Du nun die Funktion predict() verwenden. Versuch es erstmal selbst, damit kannst Du am meisten darüber lernen. Bei Rückfragen zeig einfach, wo Du mit Googlen allein hängen bleibst.